L’élément N et le végétal (4)

 Source GNU

Produit et producteur à la fois …

Commençons ici par souligner que les plantes expriment les conditions d’un milieu de vie sol-air qu’elles participent dans le même temps à former. La lecture du végétale est donc une lecture des ses passions ou passivités (vent, pluie, température, etc.), comme de ses actions ou activités (pH et structure des sols, humidification de l’air, etc.).
Ajoutons également la proposition suivante de Francis Hallé : « (…) la plante doit être capable, dans une certaine mesure, de se changer elle-même, faute de quoi, elle disparaît, elle n’est plus adaptée à un nouvel environnement. C’est la solution du végétal : puisque je ne peux pas fuir, je vais devenir quelqu’un d’autre … je suis alors condamné à la transformation, à la mutation. »

Parmi les activités de la plante susceptibles de modifier son environnement, son « régime alimentaire ». Lorsque celle-ci prélève plus d’équivalents cations (Ca2+, Mg2+, K+, NH4+) que d’équivalents anions (NO3-, PO43-), elle libère alors le surplus de charge positive sous la forme d’équivalents H+ et le pH de sa rhizosphère diminue. A l’inverse, si la plante prélève plus d’équivalents anions que d’équivalents cations, elle libère la différence sous forme d’équivalents hydroxyle OH- et le pH de la rhizosphère augmente.
Au niveau de la rhizosphère, la nutrition minérale de la plante se traduit donc à la fois par une diminution de la concentration en solution des éléments prélevés et par une modification du pH de la solution du sol.
On comprendra mieux pourquoi certaines associations de plantes ne fonctionnent pas. Les plantes ayant une préférence pour l’acidité (terre de bruyère), où en produisant (légumineuses), celles-ci cohabitent très difficilement avec les plantes calcicoles pour lesquelles l’acidification du sol est source d’excès en aluminium et de manque en phosphore. Parlant de l’élément N nous n’avons pas évoqué l’élément P (phosphore), retenons ici que les besoins en azote et en phosphore évoluent parallèlement (ATP = adénosine triphosphate, C10H16N5O13P3).

Conséquences du rapport NO3- / NH4+ absorbé par les plantes …

Conséquence de ce que nous venons de dire, la forme d’azote minérale adsorbée par la plante, le rapport NO3-/NH4+, n’est pas sas conséquence sur le devenir de son sol. Un sol qui va en s’acidifiant entraine à terme un ralentissement de l’activité biologique : toxicité grandissante, diminution du travail bactérien et de la minéralisation, modification de sa structure physique, etc.

Rappelons que la décomposition de la matière organique azotée par les bactéries saprophytes produit l’ammoniaque (NH3) qui constitue la principale initialisation du cycle de l’azote dans les sols.
Dans l’eau, l’ammoniaque devient ammonium (NH3 + H2O → NH4+ + OH-). En milieu bien oxygéné, la formule de la minéralisation de l’azote par nitrification est la suivante:
1) NH3 + O2 → NO2− + 3H+ + 2e− (ammoniaque devient nitrite)
2) NO2− + H2O → NO3− + 2H+ + 2e− (nitrite devient nitrate)

Au cours de cette dernière réaction il y a donc libération d’ions hydrogènes H+ (forme hydronium H3O+ en solution), d’où une certaine acidification de la partie racinaire du sol. Les ions H+ libérés peuvent alors se fixer dans les colloïdes négatifs du sol au détriment des autres cations, tandis que les ions NO3- volontiers lessivables ont tendance à quitter l’écosystème avec les pluies. La nitrification est ainsi en elle-même un facteur d’acidification, que l’acidification réduit à terme …

L’acidification peut-être plus ou moins renforcée selon le rapport NH4+ / NO3- qui est adsorbé par la plante. Lorsque la plante absorbe des nitrates (NO3-) et afin d’assurer l’équilibre de ses charges, celle-ci adsorbe dans le même temps un cation (K+, Ca2+, Mg2+, H+, etc.) et/ou expulse un anion (HCO3 – ou OH-, etc.), ce qui est sans effet ou entraine une faible augmentation du pH de la rhizosphère.
A contrario, lorsque les plantes adsorbent l’azote minéral sous la forme d’ammonium NH4+, elles relâchent dans le même temps des ions H+ au niveau de leurs racines (NH4+ → NH3 retenu + H+ évacué), ce qui entraine une faible diminution du pH de la rhizosphère.
L’ammonium NH4+ est un accepteur d’électron, soit un agent oxydant. Avec l’ammoniac il forme la fraction acide du couple acide/base (NH4+/NH3). Il s’agit d’un acide faible, substance capable de se dissocier en libérant des ions H+ en solution aqueuse (NH4+ → NH3 + H+). A l’inverse, l’ammoniac est une base, soit une substance capable de capter un ou plusieurs ions H+ (NH3 + H+ → NH4+).

L’adsorption privilégiée de l’une ou l’autre forme d’azote minérale dépend inévitablement de leur concentration respective dans le sol.
Généralement, plus le sol est chaud, humide et bien oxygéné, et plus l’activité de nitrification de l’ammonium par les micro-organismes du sol est importante. La plante fixe alors les ions  nitrates (NO3-) ainsi produits et le rapport nitrate sur ammonium (NO3-\NH4+) adsorbé est élevé. L’inverse est constaté pour un sol sursaturé en eau et/ou lessivé, la forme nitrate étant faiblement retenu par le sol, l’ammonium faiblement nitrifié.
Pour le dire autrement, en milieu oxydant (qui vole des électrons) l’azote se trouve principalement sous la forme de nitrate. Le prélèvement de l’élément N sous sa forme anionique nitrate égale ou excède alors légèrement les prélèvements de cations K+, Ca2+ et Mg2+, etc. Il en ressort que le pH de la rhizosphère varie peu, et généralement dans le sens d’une augmentation.
A contrario, en milieu réducteur (pauvre en oxygène, anoxique qui cède des électrons) l’azote se trouve majoritairement sous sa forme cationique ammonium et son prélèvement ne permet pas d’équilibrer celui des autres cations dont la plante a besoin. Afin de compenser la surcharge positive adsorbée, la plante rejette des ions H+ à l’extérieur. A terme, il se peut que le pH de la rhizosphère puisse diminuer fortement. Tout du moins tant que l’azote persiste majoritairement sous la forme de NH4+ dans un milieu réducteur, c’est-à-dire lorsque la nitrification qui nécessite de l’oxygène est impossible.
On retiendra donc que lorsque les besoins des plantes en éléments cationiques excèdent largement leur besoin en éléments anioniques, cas des légumineuses qui fixent directement l’azote depuis le N2 atmosphérique sans passer par la forme NO3-, cela se traduit par une diminution systématique du pH de leur rhizosphère.
Par ailleurs il existe donc une relation directe entre le taux d’oxygène présent dans le sol et son potentiel d’oxydoréduction (rH) : plus un milieu est riche en oxygène et plus il a tendance à être oxydant (27

Au final et pour des conditions météorologiques équilibrées, l’adsorption de NO3- est supérieure à celle de NH4+ pour la plupart des espèces végétales. Chose assez curieuse en ce qu’elle n’est pas rentable d’un point de vue énergétique. En effet, une fois adsorbé une grande partie du NO3- est immédiatement réduite en NH4+ pour assimilation dans les acides aminés (-NH2). Or un tel processus de réduction (gain d’électron) du nitrate en ammonium exige plus d’énergie (ATP) que n’en exigerait l’adsorption et l’assimilation de l’azote directement sous sa forme NH4+.
Le coût énergétique additionnel est néanmoins supportable dans la mesure où les plantes favorisent la capture de NO3- afin d’assurer l’équilibre de leurs charges eu égard à leurs forts besoins d’adsorption en macroéléments cationiques (K+, Ca2+, Mg2+).
Par conséquent, si l’ammonium est mieux retenu par les sols, comme sa capture plus économe en énergie, elle peut néanmoins restreindre à forte dose l’adsorption des autres cations par substitution et acidification du sol.

D’une forme à une autre …

« Life is a struggle, not against sin, not against the Money Power, not against malicious animal magnetism, but against hydrogen ions. »  H. L. Mencken

Si les végétaux se doivent de conserver l’équilibre acide-base de leur milieu extérieur, il en va de même pour le milieu intérieur des animaux. Dans un cas comme dans l’autre, cet équilibre dépend grandement de la nature des nutriments ingérés.
Ne disposant pas de pompe interne, la plante absorbe ou adsorbe ses nutriments grâce à des entrées – sorties d’eau permanentes dont les mouvements sont ainsi maximum en période de croissance. Francis Hallé estime dans son ouvrage « l’éloge de la Plante », qu’un seul grand arbre une fois déplié représenterait environ 160 hectares (1 600 000 m2) de surface d’échange hydrique avec le dehors (système interne, foliaire, racinaire). Notons également que l’étendue du système racinaire qui capte l’eau est approximativement égale à la surface foliaire.
Bien répartis sur une bonne texture de sol, 500 mm de précipitations fournissent 5000 t d’eau disponible par ha. Un hectare de forêt évapotranspire (sortie d’eau au niveau des stomates des feuilles) entre 3000 et 4000 t d’eau par an. Un érable de 15 ans représente 170 000 feuilles, 680 m2 de surface foliaire non dépliée, évapotranspire 300 litres d’eau par jour en période de croissance. On perçoit ici au passage le rôle majeur que peut jouer la végétation dans la régulation du cycle de l’eau.

Variable selon la nature de chaque plante, l’évapotranspiration fluctue principalement en fonction :

→ de la température : le taux de transpiration augmente avec la température.
Afin de préserver l’intégrité de ses tissus et sachant que certaines réactions biochimiques ne s’effectuent que dans une certaine fourchette de température, l’eau rendue à l’atmosphère expulse avec elle le trop plein d’énergie calorifique (la dipolarité de la molécule d’eau lui permet une capacité calorifique élevée).

→ du degré hygrométrique : le taux de transpiration diminue quand le degré hygrométrique de l’air ambiant augmente.
Il est plus facile à l’eau de s’évaporer en air sec (potentiel hydrique négatif, peu d’eau libre dans l’air ambiant) qu’en air saturé (potentiel hydrique fort proche de 0, beaucoup d’eau libre dans l’air ambiant). Ceci s’explique du fait que le flux d’eau montant dans la plante est d’autant plus fort que la différence de potentiel hydrique entre le point d’entrée et le point de sortie est importante. L’eau « coule » ainsi depuis le sol où elle est peu liée (potentiel hydrique fort) jusqu’aux feuilles où elle est très liée (potentiel hydrique fortement négatif, l’eau y étant liée dans les cellules à diverses substances en solution).
Profitons de ce point pour définir quelques notions de base. A travers une membrane semi-perméable qui ne laisse passer que l’eau, celle-ci coule du milieu le moins concentrée (hypotonique) vers celui qui l’est le plus (hypertonique) afin de rétablir l’équilibre des concentrations. On appelle ce phénomène osmose. Lorsque de l’eau rentre ainsi dans la cellule (milieu hypertonique), la pression exercée de l’intérieur vers le milieu extérieur est appelé pression de turgescence (phénomène responsable de la rigidité des parties vertes de la plante).

→ des mouvements du vent : une augmentation des mouvements de l’air ambiant augmente la transpiration. Un vent qui assèche l’air augmente la différence de potentiel hydrique sol-air.

Un acre de maïs (environ 4 047 m2) peut ainsi dégager de 11 400 à 15 100 litres d’eau par jour, un gros chêne émettre 151 000 litres par an. On estime ainsi qu’environ 10 % de l’humidité de l’atmosphère est relâchée par l’évapotranspiration végétale.
Tous les échanges se devant de conserver l’équilibre acido-basique, on imagine la régulation permanente qu’opère la plante à grande échelle de temps et d’espace. Ce que permet la relative autonomie de ses populations cellulaires, la plante ne disposant pas de système de contrôle intégré tel le système nerveux de l’animal. A bien des égards une plante est une société de cellule décentralisée.

Chez l’homme disposant d’une pompe, d’un milieu d’échange fermé comme d’un système nerveux central, le principal opérateur de capture des nutriments est l’intestin grêle. Celui-ci a généralement un diamètre de 4 à 5 cm pour une longueur de 6 m. Ses nombreux replis macroscopiques (valvules, villosités) et microscopiques (microvillosités) accroissent sa surface d’absorption et d’échange avec les vaisseaux sanguins (environ 300 m2). Condition vitale, le pH du sang humain doit impérativement rester compris entre 7,32 et 7,42. Pour ce faire il existe là aussi des systèmes tampons, ensemble de bases faibles qui acceptent les ions H+ présents afin de donner un acide faible. L’exemple-type étant ici le Bicarbonate (HCO3-) qui, combiné à un ion H+ donne l’acide carbonique: HCO3- + H+ → H2CO3.

Symbiose, concurrence et machine de guerre …

Outre la minéralisation de l’azote organique, la fixation biologique de l’azote atmosphérique tient un rôle direct ou indirect non négligeable dans la fourniture d’azote aux plantes.
Fourniture en azote directe dans le cas de certaines plantes comme les légumineuses (famille des Papilionacées et Fabacées avec stades herbacé, arbustif ou arboré) dont les bactéries symbiotes (rhizobium) fixent le N2 contenu dans les pores du sol depuis les nodules des racines de la plante. L’azote ainsi fixé peut-être :
→ utilisé directement par la plante hôte ;
→ excrété vers le sol à partir des nodules des racines ;
→ libéré dans le sol quand les nodules meurent ou quand les résidus des légumineuses se décomposent.

Ces bactéries des nodules sont ainsi capables de fixer entre ¼ et ¾ des besoins en azote  de la plante. Ne nécessitant pas d’apport exogène d’engrais azotés, ces plantes sont très économes en culture. Elles contribuent à enrichir le sol en azote et constituent ainsi de bon précurseur pour les céréales.
En outre, une particularité des Fabacées est la présence dans les nodules de ses racines d’une protéine fixatrice de dioxygène (O2) très proche de l’hémoglobine et qui permet de former un milieu anaérobie favorable au développement de rhizobium.

L’élément N et le végétal (4) dans Biodiversité image0013

Capable de fixer l’azote atmosphérique, le Robinier faux-acacia peut coloniser les sols les plus pauvres, acides et pollués, comme de modifier fortement les écosystèmes qu’il colonise (ombrage, compétition racinaire, etc.) La litière qu’il produit est très riche en azote et favorise l’installation d’espèces nitrophiles.  Ces espèces aiment les sols saturés en bases échangeables et très riches en azote (NO3-). Les espèces nitroclines sont quant à elle des espèces qui affectionnent les sols saturés et assez riches en azote. Résistant à la sécheresse et au grand froid, l’introduction de cette espèce est à proscrire dans les espaces naturels protégés comme à leurs proximités. Cette espèce peut à contrario être employée afin de revégétaliser des sols très pollués.
Les agencements plante-bactérie capables de fixer l’azote atmosphérique sont ainsi de redoutables colonisateurs.

Des indicateurs de la teneur en azote du sol …

Un bio-indicateur est un indicateur (espèce végétale, fongique ou animale, groupe d’espèces ou groupement végétal) dont la présence ou l’état nous renseigne sur certaines caractéristiques écologiques du milieu, au premier rang desquelles la composition des sols.

image0023 dans Francis Halle

Les quelques bio-indicateurs commun de la teneur en azote du sol constitue les bases d’une première grille de lecture.
→ Teneur élevée en azote : concentration d’ortie commune, de bardanes, etc.
→ Faible teneur en azote : concentration de trèfle (Trifolium Arvense), de luzerne et de tous autres végétaux capables de fixer l’azote atmosphérique.
Plantes indicatrices des caractères d’une prairie à sols riches en azote : bonnes graminées prairiales, Chiendent rampant, Pâturin commun et annuel, Vulpin des prés, Renoncules âcres et rampantes, Plantain majeur, Rumex, Pissenlit, Ortie, Grande Berce, Prêle des champs, Mouron des oiseaux.

image003 dans Monde végétal

***

Image de prévisualisation YouTube Agencements des machines vertes …

2 Réponses à “L’élément N et le végétal (4)”


Laisser un Commentaire




Secrétaire-Chsct-Crns |
Communication NonViolente -... |
ma vision des choses!!! |
Unblog.fr | Annuaire | Signaler un abus | Boîte à idées
| robert robertson
| Le VP Marie-Victorin